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Human prefrontal cortex supports goal-directed behavior by repre-
senting abstract information about task context. The organizational
basis of these context representations, and of representations un-
derlying other higher-order processes, is unknown. Here, we use
multivariate decoding and analyses of spontaneous correlations to
show that context representations are distributed across subnet-
works within prefrontal cortex. Examining targeted prefrontal re-
gions, we found that pairs of voxels with similar context preferences
exhibited spontaneous correlations that were approximately twice as
large as those between pairs with opposite context preferences. This
subnetwork organization was stable across task-engaged and resting
states, suggesting that abstract context representations are con-
strained by an intrinsic functional architecture. These results reveal a
principle of fine-scaled functional organization in association cortex.

fMRI | resting-state | rule | cognitive control | functional organization

he cerebral cortex exhibits functional organization at multi-

ple spatial scales. At a coarse scale, the cortex is parcellated
into functional areas (1, 2) that coordinate as networks through long-
range connections (3-5). These areas represent and compute in-
formation with functional circuitry that is organized more finely.
Some fine-scaled, intrinsic principles have been described in detail,
particularly for sensory cortex (6, 7). In contrast, the subregional
organization of prefrontal cortex (PFC), which gives rise to higher-
order processes, including attention, decision-making, and goal-
directed action (8, 9), remains largely uncharacterized. Whether PFC
representations are encoded within an equipotential system or con-
strained by an intrinsic functional architecture is currently unknown.

Sensory cortex can be mapped by parametrically varying stim-
ulus attributes and measuring changes in the neural response, but
complex and dynamic response properties limit the effectiveness
of this approach for mapping PFC and other association regions.
An alternate strategy is to leverage spontaneous variability in
neural activity. Neural responses to repeated presentations of
sensory stimuli, or in the absence of stimulation and explicit task
demands, exhibit variability that is attributed to ongoing sponta-
neous activity (10-13). Traditional analyses consider spontaneous
activity to be noise, but there is increasing evidence that shared
spontaneous variability is a signature of functional organization
(14). Analyses of spontaneous correlations have been used to
identify multiple large-scale functional networks (4, 5, 15) and
boundaries between functional areas (2, 16-18) in human and
nonhuman primate association cortex. The spontaneous correla-
tion structure also mirrors established fine-scaled principles of
functional organization in visual cortex, such as preferences for
retinotopic position (19) and stimulus orientation (20). We
therefore leveraged spontaneous activity to examine the fine-
scaled functional organization of human PFC.

We focused our investigation on prefrontal computations that
enable goal-directed behavior. Across two experiments, we scan-
ned subjects with high-resolution fMRI while they performed tasks
that demanded selective integration of noisy sensory evidence
according to a shifting decision rule, or context. During rule-based
decision-making, distributed patterns of activation in lateral PFC
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encode a representation of task context (21-23). We have pre-
viously reported that these context representations are strongly
expressed in the inferior frontal sulcus (IFS), a prefrontal region
defined through large-scale analyses of spontaneous correlations
(24, 25). Here, we use multivariate decoding and analyses of
subregional spontaneous correlations to show that context repre-
sentations are organized across subnetworks within the IFS. Our
results demonstrate that abstract cognitive representations emerge
from an intrinsic functional organization in human PFC.

Results

In experiment 1, subjects viewed a bivalent random dot stimulus
and were cued to discriminate either the direction of coherent
motion or the more prevalent color (Fig. S14). We first sought to
identify distributed patterns representing the task context (i.e., the
motion vs. color rule). Guided by our previous findings (24), we
applied linear classifiers to patterns of activation within the bi-
lateral IFS (Fig. 14). Cross-validated decoding accuracy exceeded
chance at both the group (mean = 72.2%, t;;3 = 11.22, P < 0.001;
Fig. 1B) and subject (13/14 subjects P < 0.05, permutation test)
levels. We also evaluated a region in medial frontal cortex (MFC)
(Fig. 14) that is widely implicated in cognitive control processes
(26). Decoding performance in MFC exceeded chance at the
group level (mean = 57.3%, t;3 = 3.89, P = 0.001) and in some
individual subjects (6/14 subjects P < 0.05, permutation test) but
was significantly weaker than in the IFS (paired #;3 = 7.09, P <
0.001; Fig. 1B). Because we could reliably decode task context
representations from the IFS in nearly all subjects, we focus on
this region in subsequent analyses.

Significance

Information is represented in the brain by distributed patterns of
cortical activity. In sensory cortex, these patterns are expressed
across circuits with an intrinsic functional architecture that is
organized along relevant stimulus dimensions. However, it is
unknown whether similar organizational principles underlie
distributed representations of more abstract information, such
as rules or goals. We analyzed correlations in spontaneous ac-
tivity to identify fine-scaled subnetworks in human prefrontal
cortex. These subnetworks were differentially engaged when
subjects followed rules in a complex decision-making task. Our
results show how the abstract representations that support
goal-directed cognition are constrained by an intrinsic functional
architecture and prompt new models of information represen-
tation in association cortex.
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Fig. 1. Decoding task context in targeted PFC regions. (A) Region labels as
defined on the group surface. Labels were reverse-normalized to individual
subject brains before analysis. (B) Cross-validated accuracy for decoding task
context (motion vs. color rule in experiment 1; orientation vs. color rule in
experiment 2). Each point corresponds to the accuracy for an individual
subject; horizontal lines indicate group means.

To examine the functional organization of these representa-
tions, we inverted the decoding models and obtained voxelwise
estimates of context preference (Methods). When plotted on the
cortical surface, voxel context preferences appeared organized
into relatively fine-scaled, but not random, clusters (Fig. 24 and
Fig. S2). To quantify the spatial organization, we asked whether
it was possible to reliably predict a voxel’s preference from those
of its neighbors at different distances (Fig. 2B and Fig. S3). This
analysis suggested that voxel context preferences were both
clustered and interdigitated relative to a simulated random or-
ganization, with an estimated upper bound for the local neigh-
borhood size of 13.9 + 1.7 mm (mean + SD).

Our main question was whether the functional organization of
distributed context representations corresponds to patterns of
spontaneous activity within IFS. To answer this question, we first
used a permutation test to identify voxels with relatively strong
preferences for color or motion trials (Fig. 2 and Fig. S2). For each
selected voxel, we then regressed out a model of task variables to
produce an estimate of spontaneous activity and computed all
pairwise time series correlations (12, 27). We next used multidi-
mensional scaling (MDS) to reduce the dimensionality of the
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spontaneous correlation structure and visualize its relationship to
context preferences (Fig. 34 and Fig. S4). We found that the first
two dimensions accounted for 26.3% =+ 4.9% (mean + SD) of the
variance in the spontaneous correlation structure. Within this low-
dimensional space, voxels with similar context preferences were
spatially clustered. This clustering implies that voxels with similar
context preferences exhibit elevated spontaneous correlations.

To formally test the relationship between spontaneous corre-
lations and context preferences, we computed the mean time
series correlations between all pairs of voxels with the same bi-
nary context preference and all pairs with different context
preferences. Same-context spontaneous correlations were ap-
proximately twice as large as different-context spontaneous
correlations (paired #13 = 8.05, P < 0.001; 14/14 subjects P < 0.05,
permutation test; Fig. 3B). Stronger spontaneous correlations
between voxels with similar context preferences indicate that
they are organized into functionally specific subnetworks.

In experiment 2, we sought to identify subnetworks from spon-
taneous activity in the absence of sensory stimulation or explicit task
demands. We therefore scanned an additional set of subjects both
in the resting state and during performance of a context-dependent
perceptual discrimination task. In this task, subjects were cued to
determine either the more prevalent orientation or color of a field
of small “sticks” (Fig. S1B). As in experiment 1, we applied linear
classifiers to identify a distributed representation of task context in
the IFS (mean = 69.1%, 5 = 6.46, P < 0.001; 6/6 subjects P < 0.05,
permutation test; Fig. 1B), which was, at best, weakly observed in
the MFC (mean = 54.0%), ts = 1.58, P = 0.08; 2/6 subjects P < 0.05,
permutation test; IFS vs. MFC paired ts = 3.11, P = 0.027; Fig. 1B).
The spatial organization of context preferences in experiment 2 also
provided evidence for fine-scaled clustering and interdigitation (Fig.
2 and Figs. S3 and S5).

To determine whether the overall within-IFS spontaneous cor-
relation structure was stable between rest and task performance, we
evaluated the similarity of the voxelwise correlation matrices cor-
responding to each state (Fig. S64). This test confirmed that the
correlation structure was highly stable (mean r = 0.83, ts = 73.6, P <
0.001; 6/6 subjects P < 0.05, Mantel test; Fig. S6B). Moreover, we
did not observe any general trends for elevated correlations in ei-
ther of the two states (Fig. S6C). We conclude that task-engaged
and resting-state measurements provide convergent information
about the structure of fine-scaled spontaneous correlations in IFS.

The results of experiment 2 replicated the finding that dis-
tributed representations of context are expressed across fine-
scaled subnetworks in IFS and extended this observation to
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Spatial organization of voxel context preferences in the IFS. (A) Preferences shown on the cortical surface for two example subjects (for all subjects,

see Figs. S2 and S5). Left and Right correspond to left and right hemispheres, respectively. Colored histogram bars indicate voxels selected, using a per-
mutation test, for analysis of spontaneous correlations. (B) Analysis of spatial clustering with mean-squared error of predictions about the context preference
of each voxel using the average preferences of its neighbors at different distances on the cortical surface. Errors are normalized with respect to a simulated
random distribution. Traces show mean across subjects for each experiment; error bands show SEM. See Fig. S3 for individual subject plots.
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Fig. 3. Spontaneous correlations reveal subnetworks that represent task con-
text. (A) The relationship between spontaneous correlation structure and voxel-
wise context preferences is shown for two example subjects. The positions of
voxels were determined using an MDS of the spontaneous correlation matrix; the
voxel context preferences are shown with the colormaps from Fig. 2. The same
subject is shown for both experiment 2 analyses. See Fig. S4 for all individual
subjects. (B) Mean same-context and different-context spontaneous correlations.
Large points and error bars show the group means and 95% confidence intervals;
correlation values for individual subjects are connected with a line.

subnetworks identified in the resting state (Fig. 3). As in ex-
periment 1, spontaneous correlations identified from the re-
sidual signal in a task-engaged state were approximately twice as
large for voxel pairs with the same context preference relative to
voxel pairs with different context preferences (paired ts = 4.58,
P = 0.006; 6/6 subjects P < 0.05, permutation test; Fig. 3B).
Importantly, this was also the case when spontaneous correlations
were identified in resting-state scans (paired ¢5 = 3.67, P = 0.014;
6/6 subjects P < 0.05, permutation test; Fig. 3B). Qualitative
features of the subnetwork organization, as apparent in the MDS
plots (Fig. 34 and Fig. S4), were also similar between task-
engaged and resting states. However, the low-dimensional em-
bedding explained less variance than in experiment 1 across both
measurements (task: 10.3% + 1.8%; rest: 12.1% + 2.6%), likely
reflecting the lower signal-to-noise ratio of the high-resolution
image acquisition in experiment 2.

The identification of fine-scaled subnetworks in the resting state
suggests that they are an intrinsic feature of prefrontal organiza-
tion. Because the resting-state acquisitions alternated with task
scans, however, it is possible that subnetworks dynamically emerge
during task performance and persist for several minutes following
the offset of a task. This alternative account would predict that
subnetworks should not be identifiable in the first resting-state
scan of each session, which was acquired before task performance,
and, potentially, that subnetwork strength should increase over
time. To evaluate these predictions, we recomputed the difference
in same-context and different-context correlations for each of the
four resting-state acquisition times (Fig. S7). This analysis con-
firmed that subnetworks were identifiable before task perfor-
mance (6/6 subjects P < 0.05, permutation test) and provided no
consistent evidence for change in subnetwork strength over time.

We also evaluated whether the relationship between context
preference and spontaneous correlation could be fully attributed to
short-range correlations between spatially clustered voxels with sim-
ilar preferences. Specifically, we recomputed the mean same-context
and different-context correlations while excluding voxel pairs below
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different distance thresholds (Fig. S8). The results indicated that
subnetworks extend over relatively long distances, as the relationship
remained significant even when excluding voxel pairs situated closer
than 40 mm when measured either along the cortical surface (14/14
and 6/6 subjects P < 0.05, permutation test) or in the imaging volume
(12/14 and 5/6 subjects). This analysis implies that our findings cannot
be accounted for by spatial autocorrelation in the images.

Discussion

Our results reveal an intrinsic organizational basis for the distrib-
uted representation of task context, a higher-order process that
enables goal-directed behavior (8, 9). Our main result is that voxels
with similar context preferences exhibited spontaneous correlations
that were approximately twice as strong as those between voxels
with opposite preferences. This finding provides evidence for the
existence of functional subnetworks within the prefrontal compo-
nents of the frontoparietal control network. Like large-scale func-
tional networks, subnetworks were identified based on the
spontaneous correlation structure in both resting-state activity and
residual activity during task performance; this demonstrates that
they are an intrinsic feature of prefrontal organization.

Spontaneous correlations are increasingly found to reflect
functional organization (14), yet their role in and consequences
for neural computations remain poorly understood. One pro-
posal is that spontaneous correlations are tuned by Hebbian
mechanisms to reflect the natural statistics of the environment
(28) such that correlated spontaneous activity has the effect of
regularizing task-evoked activity (11). This perspective relates to
a computational model of abstract rule representations in PFC
that suggests rule representations emerge from the learned sta-
tistical regularities of contextual elements that lead to goals (29).
The subnetwork organization observed here may be a signature
of these computations.

The presence and structure of spontaneous correlations in a
network can also limit its representational capacity (30, 31). In-
deed, humans exhibit striking capacity limits in attention and
working memory (32), and these constraints are related to gen-
eral cognitive abilities (33), including the active representation
and evaluation of rules in dynamic environments (34). Our ex-
periments lacked the statistical power to examine relationships
between subnetwork organization and behavioral measurements
of capacity, but our findings suggest a neural mechanism that
underlies capacity constraints and prompt a novel approach for
their future investigation.

We found that the fine-scaled spontaneous correlation structure
in human PFC was highly stable during both rest and performance
of a demanding cognitive task. This result is consistent with previous
work examining large-scale networks in humans (12) and pop-
ulations of neurons in macaque PFC (17). Therefore, both residual
and resting-state spontaneous correlations largely reflect the in-
trinsic organization of PFC. Although task-evoked changes in large-
scale spontaneous correlations are relatively small, they are statis-
tically reliable (12, 35) and influence behavior (27, 36). Moreover,
context-dependent information processing is also supported by dy-
namic changes in large-scale task-evoked correlations (37-39). Fu-
ture work should examine changes in subnetwork correlation
strength across a variety of cognitive tasks to determine how task
performance shapes fine-scaled task-evoked and spontaneous cor-
relations in PFC and whether temporal variability in subnetwork
strength influences behavior.

The observed subnetwork organization qualitatively resembles
densely interconnected “stripes” of neurons that have been char-
acterized using anatomical tracers in nonhuman primate PFC
(40). Computational models of working memory and cognitive
control suggest that these stripes organize prefrontal representa-
tions (41), but their functional relevance has not been empirically
determined. In line with model predictions, our results suggest
that these design principles are relevant for structuring abstract
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representations in human PFC. Despite this qualitative agree-
ment, our spatial clustering analyses indicate that context prefer-
ences are shared across larger spatial extents than can be
accounted for by the stripe sizes previously observed in nonhuman
primates (40). This may represent a difference between species or
the effect of blurring within voxels. Quantitative between-species
comparisons will require functional imaging data with a higher
spatial resolution.

Multivariate decoding approaches are increasingly used to test
theories about higher-order representations (42), but the orga-
nizational principles that underlie successful decoding in asso-
ciation cortex have remained unclear. Our data indicate that, for
context decoding in lateral PFC, information is expressed across
patches on the order of tens of millimeters and that multiple
patches comprise functional subnetworks. It remains to be de-
termined whether subnetwork organization is specific to the
representation of context in lateral PFC or if it is a general
principle in association cortex. We note that large-scale networks
exhibit consistent organization across the brain (4, 5) and suggest
that fine-scaled subnetworks in other regions may also provide
structure for high-level cognitive representations.

Analyses of spontaneous correlations identify highly reproducible
large-scale networks (4, 5) that are recruited in the performance of
functional tasks (43-45). Despite this, the relevance of spontaneous
correlations to the finer scales of organization that underlie cogni-
tive representations has not been determined. Some aspects of fine-
scaled organization in sensory cortex are reflected in spontaneous
correlation structure, including retinotopic eccentricity biases (19)
and orientation maps (20). Analyses that identify discontinuities in
spontaneous correlation structure have also been applied in PFC to
characterize areal boundaries (16, 18). Our results extend these
previous findings in two important ways. First, they show that the
fine-scale spontaneous correlation structure in PFC underlies task-
evoked representations of abstract context information. Second,
they indicate that subregional organization is characterized not just
by discrete areas but by distributed subnetworks. These findings
demonstrate the utility of spontaneous correlation analyses as a tool
for studying the fine-scaled functional organization of association
cortex and clarify the importance of functionally specific network
organization in the human brain at multiple spatial scales.

Methods

Subjects. Subjects were healthy right-handed members of the Stanford
community and gave written informed consent before participating. The
study was approved by the Stanford University Institutional Review Board. All
subjects had normal or corrected-to-normal visual acuity and normal color
vision. Subjects received $10/h for behavioral sessions and $20/h for scanning,
and they additionally received a monetary bonus based on their performance
during the imaging sessions.

In experiment 1, 20 subjects were recruited. Of this group, one was excluded
early in the training session for poor color vision, one was excluded after the
training session for performing at chance, and three ended the scanning session
early due to fatigue or iliness. One additional subject was excluded after initial
data analysis suggested experimenter error during data acquisition; the de-
cision to exclude this subject was made before performing the present analyses.
The analyses reported here reflect data from the 14 remaining subjects (19 y to
29 y old; seven females). Each subject participated in one behavioral training
session and one imaging session, for ~3.5 total hours participation.

In experiment 2, eight subjects were recruited; all had extensive experience being
scanned, one subject was author M.LW., and one subject had participated in ex-
periment 1. Of this group, one subject was excluded for early exit from the scanning
session, and one subject was excluded due to data loss during image reconstruction.
The analyses reported here reflect data from the remaining six subjects (24 y to 29y
old; three females). Each subject participated in two behavioral training sessions and
two imaging sessions for ~5 total hours participation.

Stimuli and Experimental Design.

Experiment 1. The stimuli and experimental design for experiment 1 have been
previously reported in detail (25). Briefly, subjects viewed a bivalent random
dot stimulus and were cued to make either a motion or a color
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discrimination on each trial (Fig. S1A). Motion information was controlled by
displacing a selected proportion of the dots coherently either up or down on
each screen refresh, whereas the remainder of the dots were redrawn at a
random location. Color information was controlled by drawing a selected
proportion of the dots in either red or green on each screen refresh. The
difficulties of the color and motion discriminations were set independently
for each subject using a staircase procedure in a separate training session
before scanning. On each trial, the relevant dimension (the context) was
cued by the pattern of the frame surrounding the stimulus. Two distinct
patterns cued a motion trial, and two distinct patterns cued a color trial. The
cue appeared 1 s before the stimulus on one third of trials, it appeared
concurrent with stimulus onset on one third of trials, and one third of trials
were “cue-only” trials where the frame was presented for 1 s but was not
followed by a stimulus. On trials with a stimulus, it was shown for 2 s.
Subjects were instructed to respond as soon as they had made a decision,
and they indicated their response with a button box held in the right hand.
No feedback was presented during scanning. The experiment was structured
into epochs with different proportions of motion and color trials (see ref. 25
for details). In total, each subject performed 900 trials (600 with a stimulus),
evenly divided between motion and color contexts, across 12 scanner runs.
Each run had a duration of 460 s (230 volumes).

Experiment 2. The stimuli and experimental design for experiment 2 are
reported in detail in the S/ Methods. Briefly, subjects performed a context-
dependent perceptual decision-making task that was similar to the task in
experiment 1. Subjects viewed a bivalent stimulus that comprised a field of
small sticks and were cued to make either an orientation or a color discrimi-
nation on each trial (Fig. S1B). Orientation and color information was ma-
nipulated by controlling the proportion of sticks drawn at either 45° or 135°
and in either red or green. The difficulties of the orientation and color dis-
criminations were set independently for each subject, using performance in
two separate training sessions before scanning. In contrast to experiment 1,
two different difficulty levels were used for each dimension during scanning.
On each trial, the relevant dimension (the context) was cued by the shape of a
polygon drawn at fixation. Two distinct polygons cued an orientation trial,
and two distinct polygons cued a color trial. In contrast to experiment 1, the
cue appeared concurrently with stimulus onset on every trial, the stimulus
disappeared when subjects made their first button press response, and feed-
back was provided by blinking the fixation point after error trials. The relevant
dimension on each trial was chosen randomly from a balanced distribution. In
total, each subject performed 768 trials, evenly divided between orientation
and color contexts, across 12 scanner runs in two separate scanning sessions.
Each run had a duration of 370.8 s (515 volumes).

Resting-state scans. During resting-state scans, a black fixation cross was displayed
on a gray background drawn at 30% luminance. Subjects were instructed to fixate
on the cross and to let their minds wander. Fixation and wakefulness were
monitored with an eye-tracking camera. We collected eight separate resting-state
scans from each subject in experiment 2. Each resting-state scan had a duration of
367.2 s (510 volumes). We aimed to collect an amount of data that has been
previously shown to produce reliable estimates of spontaneous correlations at the
individual subject level (46). Both scanning sessions began with a resting-state
scan, and the remainder were interleaved with the task runs.

MRI Acquisition and Preprocessing. Imaging data acquisition and preprocessing
methods are described in detail in the S/ Methods. Briefly, functional data were
acquired with high spatial resolution in experiment 1 using a partial brain acqui-
sition [2 X 2 x 2.3-mm voxels; 2,000-ms temporal resolution (TR)]) and high spa-
tiotemporal resolution in experiment 2 using a whole-brain multiband acquisition
(47) (2 x 2 x 2 mm; 720-ms TR). Functional data were distortion corrected (48) (only
in experiment 2), spatially realigned, temporally interpolated (only in experiment
1), and high-pass temporally filtered. No spatial filtering or low-pass temporal fil-
tering was applied. All analyses were performed in subject-specific space; no spatial
normalization was applied. Functional time series data were denoised using esti-
mates of head movements, nuisance signals derived from the white matter (49),
and indicator vectors to remove frames with signal artifacts. Anatomical data were
processed to construct a tessellated mesh model of the cortical surface (50), and
functional data were placed in register by aligning each run’s mean volume with
the anatomy (51).

Region of Interest Definition. Data were analyzed within a priori regions of
interest (ROIs) derived from a population atlas of large-scale resting-state net-
works (4). These regions are defined on the Freesurfer average cortical surface
mesh. To obtain ROl masks in native functional space, we first reverse-normal-
ized the ROI labels using the spherical registration parameters (52) and then
transformed the vertex coordinates into the space of the first run using the in-
verse of the functional-to-anatomical registration. Voxels intersecting the
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midpoint between the gray-white and gray—pial boundaries were included in
the analyses. This produced ROIs that respected the underlying 2D topology of
the cortical surface and minimized the contributions of voxels lying outside of
gray matter. To estimate distances between voxels along the cortical surface, we
established a one-to-one mapping between voxels and surface vertices. A small
number of vertices were originally mapped to multiple voxels; in these cases, we
used the voxel whose center was closest to the vertex coordinate. We then
constructed a distance matrix between each voxel center, where distances were
measured with Djikstra’s algorithm on the midthickness cortex mesh (53).

Decoding Analyses and Context Preference Estimation. We used linear classi-
fiers to decode information about task context and estimate each voxel's
context preference. Decoding was implemented in three steps. We first used
voxelwise general linear models to deconvolve the amplitude of the evoked
response in different experimental conditions. The estimated response am-
plitudes were then used as samples in the multivariate analyses. Finally, we
inverted the resulting decoding models to obtain estimates of each voxel's
context preference.

For experiment 1, the deconvolution model included 12 regressors reflecting a
crossing between context (color or motion), trial type (early cue, concurrent cue, or
cue only), and cue pattern. For experiment 2, the deconvolution model included 16
regressors reflecting a crossing between context (color or orientation), cue shape,
color stimulus strength, and orientation stimulus strength. These regressors were
dummy-coded such that, for each trial, there was only one regressor event. Regressors
were defined as boxcars onsetting at the time of the cue and lasting for a duration
equal to the sum of the cue duration and mean reaction time (RT), where applicable.
To control for potentially confounding RT differences between contexts (54), we
also included parametric regressors where the amplitude of the boxcar was de-
termined by the z-scored RT on each trial. RT effects were modeled separately for
each context and, in experiment 2, each stimulus strength. Condition regressors
were convolved with a canonical difference-of-gammas model of the hemodynamic
response function (HRF). We additionally included a set of identical regressors that
were convolved with the temporal derivative of the HRF. After assembling and
high-pass filtering the design matrix, the confound model that had been used to
denoise the data was regressed out. The final deconvolution model was fit to the
preprocessed time series from each voxel using ordinary least squares, separately for
each run, producing a matrix of parameter estimates across conditions and voxels.

Multivariate analyses were performed using L2 penalized logistic regression
models (55, 56) trained in a binary classification problem to predict task context
(motion vs. color trials in experiment 1 and orientation vs. color trials in exper-
iment 2). Specifically, this involved minimizing the following cost function:

n
rvnvlp %WTW +C ; log{exp[-y;(Xw+c)] +1},
where y; is the binary label for condition i, X; is the sample vector of signal
amplitude across the nvoxels in the ROI, and C is a penalty parameter, which
we set to the default value of 1.

We evaluated the accuracy of the decoding models using leave-one-run-
out cross-validation. The cross-validation procedure was as follows: On each
fold, we z-scored the training and test sets, regressed out any residual re-
lationship with RT, fit the classifier to the training set, and evaluated its
performance on the test set. We used the mean and SD of each feature in
the training set to z-score the features in both the training and testing sets.
RT effects were removed by averaging the RT across trials corresponding to
each classifier sample. These vectors were then z-scored using the mean and
SD in the training set. We regressed each feature in the training set onto the
training set RT vector and used the resulting parameter estimates to resi-
dualize both the training and test set data with respect to RT.

We assessed the significance of the classification accuracy scores in a
permutation framework where we randomly shuffled the context labels,
within run, and then retrained and tested the classifier on each of 100 it-
erations to establish a distribution of accuracy scores under the null hy-
pothesis (57). For group inferences, we subtracted the mean of each subject’s
null distribution from the observed accuracy value and then performed a
one-sample t test against 0. For subject inferences, we used the percentile of
the observed value in the null distribution to obtain a P value.

The weights that are estimated when training the decoding model are not
directly interpretable, but they can be made interpretable by multiplying the
weight vector w with the data covariance matrix, Zx, to produce a vector of
context preferences (58), a=Xxw. The resulting vector, a, is a distributed
pattern corresponding to each voxel’s relative preference for the two con-
texts. To identify voxels with strong context preferences, we compared each
voxel's preference value, a;, to the vector of preferences assigned to voxel j
in the permutation test. Voxels where the observed value fell below the
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10th percentile or above the 90th percentile in the null distribution were
used in subsequent analyses. Note that this procedure uses a liberal
threshold, as our goal was not to reject a null hypothesis in any individual
voxel but rather to identify a suitably large population of voxels that
expressed relatively strong preferences for each of the contexts. Our results
did not depend on the specific threshold chosen.

To evaluate the spatial organization of the context representations, we
determined how well we could predict the preference of a given voxel from
the preferences of its neighbors at a given radius. Specifically, we quantified
the error at radius i as the mean-squared difference between the preference
in each of the n ROI voxels and the mean of the m voxels that were sepa-
rated from it by a distance within 2 mm of the specified radius,

1L 1o
e=p > |a—m 2 a) -
Jj=1 k=1
We then compared the observed error value to a null distribution of errors
obtained by randomly shuffling the voxel preferences. To quantify the
clustering, we estimated an upper bound for the neighborhood size as the
first point at which the observed error values were greater than the mean of

the null distribution at that distance.

Estimation of Spontaneous Correlation Strength. We estimated the magnitude
of spontaneous correlations in both task-engaged and resting states. Sponta-
neous activity in a task-engaged state was estimated using residual data after
regressing out a model of task-evoked effects (12, 27). Specifically, the task
models were structured identically to the models used during the deconvolution
step of the decoding analyses, with the difference that, rather than convolving
regressors with a canonical HRF model, we used a finite-impulse-response (FIR)
basis to more flexibly fit and remove task-evoked responses. In experiment 1,
where the design was oversampled relative to the data acquisition, we first
upsampled the time series data to 1-s resolution using cubic spline interpolation.
The sampling rate of the design of experiment 2 was matched to that of the
data acquisition and so no resampling was applied. In each case, we used 24 FIR
regressors per condition, onsetting two TRs before the cue. These models were
fit using ordinary least squares to denoised time series data that had been
concatenated across runs. Analyses of spontaneous correlations in the resting
state were performed on the entire time series of denoised data. Spontaneous
correlation matrices were created for both datasets by estimating the Pearson
correlation between the time series from each voxel, separately within each run,
and then averaging correlation values over runs.

We used the data from experiment 2, where we collected both task-based
and resting-state data from the same subjects, to evaluate the similarity of the
spontaneous correlation structure under these two conditions. Specifically, we
vectorized the upper triangles of the two correlation matrices and then
computed a Pearson correlation between the two vectors. We tested the
significance of this value with the Mantel test, where, on each of 100 iterations,
we applied the same permutation to the rows and columns of the resting-state
correlation matrix and then recomputed the similarity to the task-engaged
correlation matrix to generate a null distribution of similarity values.

Relating Context Preferences to Spontaneous Correlations. To visualize the re-
lationship between context preference and spontaneous correlation, we sub-
mitted the spontaneous correlation matrix to metric MDS, which embeds the
similarity matrix in a 2D space. We then created scatterplots where each point
corresponded to a voxel. The position of the points was determined by the MDS
embedding coordinates, and the color of the points was determined by their
context preferences. Because the axes returned by MDS are arbitrary, we
computed the matrix—vector product between the MDS coordinates and the
voxel preferences and then applied a rotation so that the resulting coordinate
fell on the positive side of the x axis. We determined the amount of variance
explained by the low-dimensional projection by computing the squared
Pearson correlation between the pairwise correlation distance measurements
submitted to the MDS algorithm and the pairwise euclidean distance of points
in the resulting embedding space.

To quantify the relationship between spontaneous correlations and
context preferences, we computed the mean correlation between voxels with
the same context preference and the mean correlation between voxels with
different context preferences. We then evaluated the significance of this
value with a permutation test. On each of 100 iterations, we randomly
shuffled the context preference labels and recomputed the two measures.
We then compared the observed difference in correlations to the distribution
of differences under the null hypothesis.

Waskom and Wagner


www.pnas.org/cgi/doi/10.1073/pnas.1615269114

To determine the spatial extent of the functionally selective spontaneous
correlations, we recomputed the above measures while systematically ex-
cluding correlations between voxels that were separated by less than a
specified distance threshold. Note that this process is similar to how we
evaluated the spatial clustering of the voxel preferences, but here we used
all voxels separated by a distance larger than the threshold rather than
voxels situated at that specific distance.

Code Availability. Data were analyzed using published open-source software
and custom code written in Python. Imaging data were processed with a
workflow of FSL 5.0.8 (59) and FreeSurfer 5.3.0 (60) tools implemented in
Nipype 0.11.0 (61). The Python code used a number of libraries including
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numpy, scipy, matplotlib, seaborn, pandas, and jupyter. Cortical surface vi-
sualizations were created using pysurfer. All custom code will be made
available at https:/github.com/WagnerLabPapers/\WWaskom_PNAS_2017.
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