
content is explained primarily by the presence of a consistent

spatial code in the posterior extent of this region.

Representation of Auditory Content in MTL

MVPA analysis revealed that voxel patterns evoked by spoken

words and sounds in PHc and PRc are distinct from patterns

evoked by visual forms of content but not from one another.

One possibility is that, being the only forms of auditory stimuli

presented to the participants, spoken words and sounds might

be distinguished from other visual content based on sensory

modality. However, this finding does not necessarily entail that

these forms of auditory content share a common representa-

tional structure in PHc and PRc. To directly address how

auditory content is represented in MTL cortex, we compared

voxel patterns evoked by individual spoken word and sound

exemplars using RSA.

In PHc, within-class linear distances were significantly

smaller than would be expected by chance for spoken word

(Fig. 7a; P < 10
…2) but not sound exemplars. However, there

was significant within-class clustering of individual sound

exemplars in the third posterior-most ROI in MTL cortex

(Fig. 8a; P < 10
…2). We also found that the voxel patterns

evoked by spoken words and sounds showed cross-class

distances that were significantly smaller than chance (P < 10
…2),

indicating a highly overlapping representation of these content

forms in PHc. The overlapping representation of auditory

content was evident in the 4 posterior-most ROIs of PHc, with

significantly smaller cross-class distances between spoken

word and sound exemplars than would be expected by chance

(all P < 10
…2). Moreover, we found that auditory content was

distinct from scene content in the 4 posterior-most ROIs and

from face content in the 2 posterior-most ROIs, as revealed by

significantly larger cross-class distances between both forms of

auditory content and face and scene visual content (all P < 10
…

2). In contrast, voxel patterns evoked by spoken words and

sounds in PRc did not demonstrate significant within-class

representational similarity nor did they demonstrate significant

cross-class clustering with one another (all P > 10
…2),

suggesting that these 2 forms of content do not share

a common representational structure in PRc. This pattern of

results was true both when RSA was performed for PRc as

a whole and when it was performed on the anterior-most MTL

cortical ROI corresponding to PRc. Together, these findings

suggest that representations of auditory content are highly

overlapping throughout PHc and are increasingly distinguished

from visual content in the posterior extremity of MTL cortex.

When we examined the voxel patterns evoked by spoken

words and sounds across the anterior--posterior hippocampal

axis, we found significantly smaller cross-class distances

between spoken word exemplars and sound exemplars in the

second and third anterior-most ROIs and in the posterior-most

ROI (Fig. 8b; all P < 10
…2). The MVPA confusion matrices had

previously indicated a high overall degree of classifier

confusion in hippocampus but did not identify the precise

nature of poor performance for any particular class of content.

Here, the use of RSA within segmented hippocampal ROIs

revealed that different forms of auditory content were highly

confusable because they evoked similar distributed patterns of

response. However, unlike PHc, this effect was not accompa-

nied by consistently larger cross-class distance between face

and scene visual content (all P > 10
…2).

Discussion

Whether MTL subregions make distinct contributions to

episodic memory remains a topic of considerable debate. In

the present study, we combined hr-fMRI (Carr et al. 2010) with

both univariate and multivariate statistical measures to

Figure 7. Neural pattern distances between novel content exemplars visualized by
MDS in (a) MTL cortex and (b) hippocampus. Each content class exemplar (i.e.,
a novel miniblock) is represented by a colored dot in the panels for each MTL
subregion. Dots placed close together in the 2D space indicate that those 2
exemplars were associated with a similar pattern of activation. Dots placed farther
apart indicate that those 2 exemplars were associated with more distinct activation
patterns. The tables below each plot indicated the mean within-class linear distance
for each content class and the mean cross-class linear distance between each pair of
novel content. Bolded values indicated when linear distances lay outside of
confidence intervals derived from null distributions of within-class and cross-class
linear distances based on Monte Carlo simulation. The alpha level of the confidence
intervals was chosen based on Bonferroni correction for each of the statistical tests
performed for all anatomical ROIs (a 5 10� 2). Crosses indicate when linear distances
were significantly smaller than expected by chance and reflect greater similarity in the
activation patterns evoked by content class exemplars. Asterisks indicate when linear
distances were significantly larger than expected by chance and reflect more distinct
representation of individual exemplars.
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investigate whether event content differentiates the function of

hippocampus and MTL cortical subregions. First, our findings

revealed a distributed code for event content in PRc and PHc

that crosses anatomical boundaries, despite significant differ-

ences in responding to novel versus repeated items for only one

stimulus class in each region (novel faces in PRc and novel

scenes in PHc). In particular, multivariate analysis of responses to

novel content showed that PRc and PHc contain distinct

representational codes for faces and scenes. Second, we

observed a dissociation in content representation along the

anterior--posterior axis of the hippocampus. Anterior hippocam-

pus demonstrated peak amplitude responses that were content

general; moreover, the spatial pattern of response in this region

did not discriminate between different forms of event content. In

contrast, posterior hippocampus did not demonstrate significant

peak amplitude responses for novel stimuli from any content

class but did show a distributed coding of scene content that was

representationally distinct from other content classes. By taking

advantage of the complementary aspects of univariate and

multivariate approaches, the present data provide new insights

into the nature of representational coding in the MTL.

Content Representation in MTL Cortex

While many studies have focused on content-based dissocia-

tions between PRc and PHc (Pihlajamaki et al. 2004; Lee,

Buckley, et al. 2005; Sommer et al. 2005; Lee et al. 2008; see also

Dudukovic et al. 2011), several recent reports have observed

encoding responses for visual object and visuospatial informa-

tion in human PRc (Buffalo et al. 2006; Litman et al. 2009;

Preston et al. 2010) as well as PHc (Bar and Aminoff 2003;

Aminoff et al. 2007; Bar et al. 2008; Litman et al. 2009). In the

present study, PRc novelty responses were maximal for faces,

while PHc demonstrated maximal novelty responses to scenes,

consistent with previous reports of content-based dissociations

between PRc and PHc. However, when examining the

distribution of novelty-based responses across MTL cortex,

a response to novel scenes was observed in posterior PRc,

indicating that processing of scene information is not unique to

PHc. Notably, these representational gradients were evident at

the level of individual participants (see Supplementary Results).

These findings complement recent reports that demon-

strated greater responses to visual object content in anterior

PRc and visuospatial content in posterior PHc, with a mixed

response to scene, object, and face content in a transitional

zone at the border between PHc and PRc (Litman et al. 2009;

Staresina et al. 2011). Such findings have led to the conclusion

that discrete functional boundaries do not exist in MTL cortex

and the further speculation that selective responses to a single

content class are limited to the anterior and posterior extents

of MTL cortex. However, as discussed below, our multivariate

findings suggest that distributed representations of event

content can be observed at extreme ends of MTL cortex.

MVPA revealed significant differentiation of event content in

PRc and PHc, when treated as 2 separate regions, both across the

group and in the majority of participants. Importantly, successful

classification was observed even when preferred content (i.e.,

novel faces and scenes) was removed from classifier training and

testing (see Supplementary Results). Further consideration of the

classifier confusion matrices showed that PRc and PHc maintain

distinct codes for face and scene content, as those stimuli were

significantly differentiated from all other forms of event content.

However, as indicated by the present findings and prior reports

(Litman et al. 2009; Staresina et al. 2011), clear functional

boundaries between PHc and PRc may not exist. These

observations of a mixed representation of event content as

revealed by MVPA may inadvertently result from the fact that this

analysis considered these regions as 2 distinct areas. Critically, in

the present study, we used RSA to examine how patterns of

activation represent different forms of event content both within

individual anatomically defined PRc and PHc and as a function of

anterior--posterior position along the axis of MTL cortex.

In PRc, RSA revealed significant within-class clustering for

face content in the anterior-most portion of this region, and

while it did not reach our threshold for correction for multiple

comparisons, there was also evidence for distinctive scene

representations both in PRc as a whole (P = 0.004) and in the

most posterior aspect of PRc (P = 0.008) as revealed by MVPA.

Moreover, the MVPA confusion matrices showed clear dis-

tinctions between the representation of face and scene content

in PRc. MVPA may have emphasized distinctive face and scene

Figure 8. Neural pattern distances between novel content exemplars visualized by MDS along the anterior--posterior axis of (a) MTL cortex and (b) hippocampus. Each content
class exemplar (i.e., a novel miniblock) is represented by a colored dot in the panels for each MTL subregion. Dots placed close together in the 2D space indicate that those 2
exemplars were associated with a similar pattern of activation. Dots placed farther apart indicate that those 2 exemplars were associated with more distinct activation patterns.
Results tables for each plot are available from the authors upon request.
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codes by placing greater weight on voxels from the anterior

and posterior regions of PRc, making these effects more

apparent in the classifier confusion matrices. Our RSA findings

are informative, however, in that they converge with our

univariate findings in PRc, demonstrating a predominately face-

selective response in anterior PRc combined with a scene-

sensitive response in the posterior aspect of this region.

When we considered PHc as a whole region in the RSA

analysis, we observed significant within-class clustering of

multiple forms of content, including faces and scenes. Moreover,

face and scene representations were significantly distinct from

other stimulus classes. When we considered patterns of

activation within individual ROIs along the anterior--posterior

extent of PHc, we noted that the distinctive representation of

faces and scenes was most prominent in the posterior aspect of

the region and gradually became less distinct as one moved to

the anterior portion of the region. Notably, the distinctive

representation of faces was observed in PHc despite the absence

of an above-baseline response for faces in the univariate analysis.

Similarly, while univariate analysis showed no evidence for

above-baseline responding to auditory content in PHc, RSA

revealed a representation of auditory content that was distinct

from visual content, again most evident in the posterior extent of

PHc. The fact that representational distinctions were observed

for multiple content classes in the posterior PHc runs counter to

the hypothesis that content coding would be most scene

selective at this extreme end of PHc. Thus, the present data

indicate that the distributed representation of event content in

MTL cortex extends beyond a transitional zone at the border

between PRc and PHc (Litman et al. 2009; Staresina et al. 2011)

and is also evident in posterior PHc.

It is possible that the differences in novelty-based responding

observed in MTL cortex result from differences in low-level

perceptual features of the stimuli used in the present study rather

than differences based on encoding of conceptual information

about different categories of stimuli. Because one of our goals was

to assess MTL responses to a wide variety of auditory and visual

event content, we did not control for perceptual differences

between classes of stimuli. However, representational gradients

for visual object and visuospatial information are evident in MTL

cortex even when perceptual features are equated across content

domains (Staresina et al. 2011). Moreover, previous work

examining content representation in ventral temporal cortex

has shown that patterns of nonmaximal responses that discrim-

inate between different forms of event content are not dependent

on the low-level characteristics of the stimuli, such as luminance,

contrast, and spatial frequency (Haxby et al. 2001). Collectively,

these converging findings suggest that distributed coding of event

content observed here extends beyond simple differences in the

perceptual features of events.

Content Representation in Anterior Hippocampus

Several observations of functional dissociations between anterior

and posterior hippocampus are present in the neuroimaging

literature (Prince et al. 2005; Strange et al. 2005; Chua et al. 2007;

Awipi and Davachi 2008; Poppenk et al. 2010). However, few

studies have considered the possible representational basis for

such dissociations. The present findings indicate that dissocia-

tions between anterior and posterior hippocampus may result

from differences in content-based representational coding

between these 2 regions.

A prevailing view of MTL function proposes that hippocampus

plays a domain-general role in episodic memory by binding

content-specific inputs from MTL cortex into integrated memory

representations (Davachi 2006; Manns and Eichenbaum 2006;

Diana et al. 2007). Consistent with this view, domain-general

encoding and retrieval responses have been observed in

hippocampus relative to content-specific processing in MTL

cortex (Awipi and Davachi 2008; Staresina and Davachi 2008;

Diana et al. 2010). Human electrophysiological evidence also

suggests an invariant representation of perceptual information in

hippocampal neurons relative to MTL cortex (Quian Quiroga

et al. 2009).

Our findings indicate that such domain-general memory

functions may be specific to the anterior hippocampus. In the

present study, we observed generalized responses to novel

event content that were limited to the most anterior region of

hippocampus. Unlike PRc and PHc, anterior hippocampal

responses were observed for all forms of novel content,

reflecting domain-general engagement of this region during

the presentation of novel stimuli. Multivariate analyses further

demonstrated that the representational code in anterior

hippocampus does not differentiate between content classes.

Specifically, distributed activation patterns in anterior hippo-

campus afforded reduced discrimination and demonstrated

more confusability between content classes than exhibited by

PHc and PRc. Together, the univariate and multivariate findings

indicate that anterior hippocampus is engaged by many

different forms of content and that the spatial patterns of

response evoked by different forms of content are not distinct,

consistent with a domain-general representational code.

Domain-general coding, however, could take many forms.

Some theories have proposed that hippocampal representations

are abstract, reflecting arbitrary relationships between different

sensory inputs, and do not contain sufficient information to

discriminate between distinct forms of sensory content

(Eichenbaum and Cohen 2001; Morris et al. 2003). An alternate

possibility suggests that some hippocampal neurons would have

direct visual object inputs, others direct visuospatial inputs, and

yet others direct auditory inputs; by linking the activity of neurons

that code-related content (e.g., a person’s face, voice, and written

name), content-specific hippocampal neurons could demonstrate

domain-general responses that code abstract concepts and be

cued from multiple sensory modalities (Quian Quiroga et al.

2009).

One further possibility is that representational codes in

anterior hippocampus convey important information about the

salience or significance of specific stimuli (e.g., a stimulus is

novel or associated with an extrinsic reward) that would be

applicable to stimuli from many content classes. Notably, in the

rodent brain, the density of dopaminergic, noradrenergic, and

serotonergic inputs is greater in ventral (anterior in the

human) hippocampus relative to the dorsal (posterior in the

human) hippocampus (Gage and Thompson 1980; Verney et al.

1985). Based on the high density of neuromodulatory inputs in

anterior hippocampus, it is possible that this region is sensitive

to motivational states (Moser MB and Moser EI 1998; Fanselow

and Dong 2010) that might indicate the behavioral salience of

incoming information to guide memory formation. Novelty in

the current study may serve as an important indicator of

salience (Lisman and Grace 2005; Wittmann et al. 2007) and

thus preferentially lead to domain-general maximal responding

in anterior hippocampal regions sensitive to this motivational
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modulation. Such a generalized salience code would not

necessarily be expected to further differentiate the content

class of particular stimuli. While the current data cannot

differentiate these alternate accounts of domain-general

coding, our findings do indicate that anterior hippocampus

maintains a less spatially organized coding of event content that

is distinct from the content representations in both MTL cortex

and posterior hippocampus.

Content Representation in Posterior Hippocampus

Neuropsychological observations have led some to posit that

hippocampus differentially mediates spatial memory (Bird and

Burgess 2008). For example, some patients with selective

hippocampal lesions demonstrate impaired recognition (Cipolotti

et al. 2006; Bird et al. 2007, 2008) and visual discrimination of

visuospatial information (Lee, Buckley, et al. 2005; Lee, Bussey,

et al. 2005), with preserved performance for faces. Animal

research suggests that such spatial memory impairments result

primarily from damage to the dorsal (posterior in the human)

hippocampus (Moser MB and Moser EI 1998). Lesions to the

dorsal, but not ventral, hippocampus in the rodent severely impair

memory formation in maze learning tasks, with the magnitude of

the impairment being proportional to the size of the dorsal

hippocampal lesion (Moser et al. 1993, 1995). Moreover, while

place cells that demonstrate spatially restricted firing patterns are

present in both dorsal and ventral hippocampus, the proportion

of such cells is lower in the ventral hippocampus, and place fields

in ventral place cells are larger and less selective than dorsal

hippocampal place fields (Jung et al. 1994).

Here, we demonstrate that in the human brain, distinct

representational coding of spatial information is primarily

observed in the posterior hippocampus. While posterior

hippocampus showed poor overall classification accuracy

relative to PRc and PHc in our MVPA analysis, classification

accuracy for scenes was significantly above chance. Further

consideration of the classifier confusion matrices indicates that

the classifier readily identified posterior hippocampal activation

patterns for scenes in the presence of a high level of

confusability between all other forms of content. Moreover,

the difference between posterior hippocampal and MTL cortical

classification accuracy was most apparent when scenes were

removed from classifier training and testing (Supplementary Fig.

S2). When doing so, significant classification accuracy in

posterior hippocampal regions was apparent in less than half

of participants, whereas classification in PRc and PHc was

significant in the majority of participants.

Perhaps most compellingly, our RSA findings provide a clear

indication that the most posterior aspect of hippocampus

maintains a coherent spatial code for scenes that is distinct

from other forms of content. These findings revealed a high

degree of representational clustering of scene content in the

posterior-most aspect of the hippocampus that was not observed

in any portion of anterior hippocampus. These findings of

a distinct representational code for scenes in posterior

hippocampus are in notable contrast to a previous report

documenting poor content discrimination in hippocampus using

MVPA (Diana et al. 2008). One primary difference between the

present finding and this prior research is the consideration of

anterior and posterior hippocampus as separate regions in the

current study, which proved critical to our ability to resolve the

distinctive representational codes maintained by these regions.

More generally, the multivariate techniques utilized in the

present study were especially critical to our ability to

determine the content sensitivity of posterior hippocampus.

To date, fMRI research in humans has made almost exclusive

use of univariate statistical approaches to examine content

coding in the hippocampus. Here, we did not observe

significant peak amplitude responses in posterior hippocampus

relative to baseline for any novel content class, including

scenes, which would have limited our conclusions regarding

content coding in posterior hippocampus. The differences

between the univariate and multivariate findings in posterior

hippocampus again highlight the power of combining different

analysis approaches to understand the nature of representa-

tional coding in MTL subregions.

Collectively, our findings of a distinct representation of scene

content in posterior hippocampus and domain-general respon-

siveness in anterior hippocampus suggest that the hippocampus

consists of at least 2 functional modules whose functions may

combine to support memory. This dissociation between the

representational properties of anterior and posterior hippocam-

pus may, to some degree, resolve conflicting findings from the

literature that have shown both domain-general and scene-

selective functional properties in hippocampus.

MTL Representations of Auditory Content

An additional novel aspect of the current study is the inclusion

of auditory information. Research on episodic memory has

made predominate use of visual content, such as visual words,

faces, objects, and scenes, and very little is known about the

neurobiological substrates of memory for auditory events.

Direct auditory inputs to PRc and PHc are meager relative to

visual inputs, and it is possible that most auditory information

reaches PRc and PHc through indirect connections with other

structures (Munoz-Lopez et al. 2010). In the present study, we

did not observe significant peak amplitude responding for

either form of auditory content in PRc or PHc. Moreover, while

PRc and PHc demonstrated the ability to classify some auditory

content, classification performance for auditory stimuli was far

below classification accuracies for scenes and faces. However,

RSA revealed both overlapping representation of different

forms of auditory content and discrimination of auditory and

visual content in posterior PHc, suggesting a representation of

auditory content in this region that is distinct from visual

content. In the primate brain, PHc, but not PRc, receives

limited input from unimodal auditory association cortex in the

superior temporal gyrus (Suzuki and Amaral 1994), which may

contribute to a more distinctive representation of auditory

content in PHc than in PRc.

Alternatively, it is possible that another route for auditory

information exists within the MTL that does not include

connections to PRc and PHc. ERc receives direct auditory input

from superior temporal gyrus (Amaral et al. 1983; Insausti and

Amaral 2008), through which auditory information could reach

the hippocampus. Interestingly, univariate analyses revealed

responses to novel auditory stimuli only in anterior hippocam-

pus, raising the possibility that memories for auditory informa-

tion are processed via different pathways than visual content

within MTL. Human electrophysiological data provide additional

evidence for this possibility, as neurons in hippocampus and ERc,

but not PHc, demonstrate responses to auditory stimuli (Quian

Quiroga et al. 2009). Our findings emphasize the need for future
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research to consider potential differences in MTL pathways for

visual and auditory memories.

Relationship between Novelty Responses and Episodic
Encoding

While the present study cannot directly link content-based

novelty responses to successful episodic encoding, a consider-

able body of research has demonstrated the relationship

between novelty responses and successful memory formation

(e.g., Kirchhoff et al. 2000; Ranganath and Rainer 2003;

Fernandez and Tendolkar 2006; Dudukovic et al. 2011).

Notably, in a previous study employing a similar incidental

target detection task, we found that the magnitude of novelty

responding in MTL cortex and hippocampus predicted sub-

sequent memory outcome (Preston et al. 2010), providing

some indication that novelty effects observed in the current

study reflect episodic encoding. Importantly, the use of

incidental novelty encoding paradigms in this and prior

research suggests that MTL encoding occurs automatically,

regardless of the particular goals of the task. Moreover, when

task goals are held constant, as they are in the current study, we

observe functional gradients in MTL cortex and hippocampus

that differ based on the nature of event content and can resolve

specifics about event content from the distributed pattern of

data. Recently, such distributed representations of face and

scene content in prefrontal and temporal lobe structures

during word-image encoding have been linked to successful

memory formation (Kuhl et al. 2011). This finding suggests that

the multivoxel representations of event content observed in

the present study may play an important role in episodic

encoding, and future hr-fMRI studies will help determine how

distributed content codes impact memory performance.

Conclusions

While several leading theories focus on content as an important

organizational principle for MTL function, the present data

highlight the widely distributed and overlapping nature of

content representation within the MTL. Moreover, the findings

highlight the necessity of using multiple analysis approaches to

characterize the representational capacity of MTL subregions.

In particular, multivariate techniques may afford greater

sensitivity to the nature of MTL subregional representation by

taking into account the entire pattern of data within a region,

not just those voxels that are maximally responsive to

a predefined contrast.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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